EXERCICE B - Combien de temps avant l'hypothermie ? (10 points)

Wim Hof, surnommé « l'homme de glace » est internationalement connu pour avoir battu plusieurs records du Guinness d'exposition au froid extrême. Il a établi le record du monde du temps le plus long au contact direct du corps avec la glace. Il a réitéré 16 fois l'exploit. Son record le plus long a une durée de 1 heure 53 minutes et 2 secondes en 2013.

L'objectif de cet exercice est d'estimer le temps pendant lequel une personne peut rester dans de l'eau froide avant d'atteindre l'hypothermie.

On considère une personne de masse m = 75 kg plongeant en maillot de bain dans une eau glacée où règne une température notée $\theta_{\text{eau}} = 2,8$ °C, considérée comme constante.

On supposera que la température du plongeur est uniforme, c'est-à-dire identique en tous points de son corps. Elle évolue au cours du temps et sera notée $\theta_{int}(t)$.

Le corps humain est naturellement réchauffé par de l'énergie produite par son métabolisme et représentée par un flux thermique constant de 1.0×10^7 J par jour.

Les échanges thermiques entre le plongeur et l'eau seront modélisés par des échanges de type conducto-convectifs décrits par la loi phénoménologique de Newton :

$$\Phi(t) = h \times S \times (\theta_{\text{eau}} - \theta_{\text{int}}(t))$$

avec $\Phi(t)$ en W: le flux thermique conducto-convectif

 $S = 1.9 \text{ m}^2$: surface de contact du plongeur avec l'eau

 $h = 100 \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-1}$: coefficient de transfert thermique

Données

- \triangleright Capacité thermique massique du corps humain : $c = 3.5 \times 10^3 \text{ J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$.
- L'hypothermie est un phénomène au cours duquel une baisse anormale de la température d'un être vivant à sang chaud ne permet plus d'assurer correctement ses fonctions vitales. Pour l'être humain :
 - de 34 à 35 °C, l'hypothermie est modérée,
 - de 30 à 34 °C, l'hypothermie est moyenne,
 - en dessous de 30 °C, l'hypothermie est grave.
- **1.** Montrer que la puissance dissipée par le métabolisme, à flux constant, est $P_{th} = 0.12$ kW environ.
- 2. Montrer que les échanges thermiques entre le plongeur et son environnement pendant une petite durée Δt est donnée par la relation : $Q = P_{th} \times \Delta t + \Phi(t) \times \Delta t$. Donner le signe de $\Phi(t)$.
- **3.** En utilisant le premier principe de la thermodynamique et en considérant le plongeur comme un système fermé incompressible, déterminer la relation donnant la variation de l'énergie interne ΔU du plongeur en fonction de sa masse m, de sa capacité thermique massique c et de la variation de sa température $\Delta \theta_{\rm int}$.
- **4.** Montrer, par le bilan d'énergie précédent, que la température, supposée uniforme, $\theta_{\rm int}(t)$ du plongeur vérifie l'équation différentielle suivante :

$$\frac{d\theta_{\text{int}}(t)}{dt} + \frac{\theta_{\text{int}}(t)}{\tau} = \frac{\theta_{\text{eau}}}{\tau} + \frac{P_{\text{th}}}{m \times c} \quad \text{avec} \quad \tau = \frac{m \times c}{h \times S}$$

23-SCIPCJ1NC1 Page 22 / 23

5. Montrer que la constante au peut s'exprimer en secondes et déterminer sa valeur.

La solution de l'équation différentielle est :

$$\theta_{\text{int}}(t) = 33.6 \times e^{-\frac{t}{1.4 \times 10^3}} + 3.42$$
 avec t en s et θ_{int} en °C.

- **6.** Déterminer la durée maximale de plongée envisageable avant d'atteindre l'hypothermie grave.
- 7. Critiquer le modèle simplifié utilisé ici pour expliquer le record de Win Hof.

23-SCIPCJ1NC1 Page 23 / 23